Hybridizing Cultural Algorithms and Local Search

نویسندگان

  • Trung Thanh Nguyen
  • Xin Yao
چکیده

In this paper, we propose a new population-based framework for combining local search with global explorations to solve single-objective unconstraint numerical optimization problems. The idea is to use knowledge about local optima found during the search to a) locate promising regions in the search space and b) identify the suitable step size to move from one optimum to others in each region. The search knowledge was maintained using a Cultural Algorithm-based structure, which is updated by behaviors of individuals and is used to actively guide the search. Some experiments have been carried out to evaluate the performance of the algorithm over several well-known continuous problems. The test results show that the algorithm can perform better than some current unconstraint numerical optimization versions of Cultural Algorithms in term of function evaluations and success rate in certain classes of problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study of Hybridizing Cultural Algorithms and Local Search

In this paper the performance of the Cultural Algorithms-Iterated Local Search (CA-ILS), a new continuous optimization algorithm, is empirically studied on multimodal test functions proposed in the Special Session on Real-Parameter Optimization of the 2005 Congress on Evolutionary Computation. It is compared with state-of-the-art methods attending the Session to find out whether the algorithm i...

متن کامل

A Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms

In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Hybridizing Shuffled Frog Leaping and Shuffled Complex Evolution Algorithms Using Local Search Methods

In this research, a study was carried out to exploit the hybrid schemes combining two classical local search techniques i.e. Nelder–Mead simplex search method and bidirectional random optimization with two metaheuristic methods i.e. the shuffled frog leaping and the shuffled complex evolution, respectively. In this hybrid methodology, each subset of meta-heuristic algorithms is improved by a hy...

متن کامل

Real-coded genetic algorithm with uniform random local search

Genetic algorithms are efficient global optimizers, but they are weak in performing fine-grained local searches. In this paper, the local search capability of genetic algorithm is improved by hybridizing real coded genetic algorithm with 'uniform random' local search to form a hybrid real coded genetic algorithm termed 'RCGAu'. The incorporated local technique is applied to all newly created of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006